On the generalized Burgers equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

On the Burgers-poisson Equation

In this paper, we prove the existence and uniqueness of weak entropy solutions to the Burgers-Poisson equation for initial data in L(R). Additional an Oleinik type estimate is established and some criteria on local smoothness and wave breaking for weak entropy solutions are provided.

متن کامل

The Generalized Burgers Equation with and without a Time Delay

We consider the generalized Burgers equation with and without a time delay when the boundary conditions are periodic with period 2π. For the generalized Burgers equation without a time delay, that is, ut = νuxx − uux + u+ h(x), 0 < x < 2π, t > 0, u(0, t) = u(2π, t), u(x,0) = u0(x), a Lyapunov function method is used to show boundedness and uniqueness of a steady state solution and global stabil...

متن کامل

Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation

In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2010

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-010-0061-6